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The Hexagon Quantum Billiard
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A subset of eigenfunctions and eigenvalues for the hexagon quantum billiard are
constructed by way of tessellation of the plane and incorporation of symmetries
of the hexagon. These eigenfunctions are given as a double Fourier series,
obeying C6 symmetry. A table of the lower lying eigen numbers for these states
is included. The explicit form for these eigenstates is given in terms of a sum of
six exponentials each of which contains a pair of quantum numbers and a
symmetry integer. Eigenstates so constructed are found to satisfy periodicity
of the hexagon array. Contour read-outs of a lower lying eigenstate reveal in
each case hexagonal 6-fold symmetric arrays. Derived solutions satisfy either
Dirichlet or Neumann boundary conditions and are irregular in neighborhoods
about vertices. This singular property is intrinsic to the hexagon quantum
billiard. Dirichlet solutions are valid in the open neighborhood of the hexagon,
due to singular boundary conditions. For integer phase factors, Neumann solu-
tions are valid over the domain of the hexagon. These doubly degenerate eigen-
states are identified with the basis of a two-dimensional irreducible representa-
tion of the C6v group. A description is included on the application of these
findings to the hexagonal nitride compounds.

KEY WORDS: Quantum billiards; hexagon; tessellation; basis functions;
Dirichlet and Neumann boundary conditions; irreducible representations;
nitride compounds.

1. INTRODUCTION

In the quantum-billiard problem, one examines solutions to the Schrödinger
equation for a point particle which moves freely in a convex domain in the
plane bounded by a perfectly reflecting surface.(1–8) The Schrödinger equa-
tion for the particle is given by (the Helmholtz equation)



Du(r)+k2u(r)=0 (1a)

u(D)=0 (1b)

where D denotes the enclosing boundary. The energy of the particle is given
by

E=
(
2k2

2m
(1c)

where m denotes particle mass, D represents the Laplacian and r represents
the displacement vector. Equations (1) apply equally to a clamped mem-
brane(9) or thin plate(10) and TM modes in a metal-walled uniform wave-
guide.(11) It is known that four ‘‘elemental’’ polygons are integrable both
classically and quantum mechanically.(6a, 7) These are: the triangles: p(1/4,
1/4, 1/2); p/3(1, 1, 1); p(1/2, 1/3, 1/6) and the rectangle. The equilateral
triangle quantum billiard is solved through tessellation of a parallelogram
in the plane.(2) It has been stated(8) that any n-gon which tessellates the
plane (through reflection, not translation) is integrable. This is valid for the
elemental polygons listed above. However, it is only partially valid for
the hexagon billiard. Classically, orbits which bisect a vertex of this billiard
are singular. Consequently, the classical motion may be mapped onto a
torus of genus greater than one.(12) For the hexagon quantum billiard,
solution based on tessellation of the plane through odd reflection fails due
to the property that a trivertex over 2p cannot be covered with two colors.
Similarly, tessellation of a finite convex domain in the plane (as with the
equilateral triangle billiard) fails for the hexagon. Furthermore, it has been
established that the ground state of the hexagon quantum billiard is non-
analytic in a neighborhood about a vertex.(6a) Thus, in general, the hexagon
quantum billiard is non-integrable.

In the present work solutions are derived in terms of a double Fourier
series in the plane, incorporating symmetries of hexagonal domains. Con-
straint equations are introduced to satisfy boundary conditions. Read-outs
of solutions indicate that Dirichlet boundary conditions are approximately
satisfied and result in improper complex eigenfunctions. On the other hand,
for integer phase factors, Neumann boundary conditions are satisfied and
corresponding eigenfunctions for the hexagon quantum billiard are real.
However, as these solutions are finite sums of plane waves and the system
is in general nonintegrable, they represent a subset of eigenfunctions.
Difficulty in numerics in attaining Dirichlet boundary conditions may be
attributed to discontinuous first derivatives across cusped boundaries.
Applications of these results to two-dimensional thin films of compounds
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in the nitride group which typically are in the wurtzite (hexagonal) struc-
ture as well as gallium nitride hexagonal ‘‘quantum dots’’ are described.

2. ANALYSIS

We recall the following. Let R denote a symmetry operation of the
Hamiltonian. It follows that if u(r) is an eigenfunction of H with eigen-
energy E, so is u(Rr)]. (13) Thus, eigenstates exist which share symmetries
with the Hamiltonian and for the present case, may be assumed to have C6
symmetry.

2.1. Construction of Solutions

Consider that hexagons tessellate the plane (Fig. 1). The diameters of a
hexagon of edge-length a, are: d1=a`3 < d=2a. Symmetry along the x
axis has periodicity d+a and periodicity d1 along the y axis. Calling the
eigenstate in each hexagonal domain u(x, y), we write

u(x, y)=u[x+(a+d), y] (2a)

u(x, y)=u[x, y+d1] (2b)

It follows that u(x, y) may be expanded in the double Fourier series

u(x, y)= C
.

n=−.
C
.

q=−.
bnq exp i

2p
a
5n x

3
+q

y

`3
+aFnq6 (3)

where Fnq are constant phase factors. Substituting this solution into (1a)
suggests that the form

k2=[(2p)2/3a2] 5n̄
2

3
+q̄ 26 (4)

for some characteristic n̄ and q̄ values, may be an eigenvalue for the eigen-
function u(x, y).

As noted above, solutions in a neighborhood about a vertex are non-
analytic. Consequently, in such neighborhoods, the Laplacian cannot be
taken inside the sum in (3) and resulting solutions are irregular in these
neighborhoods. This observation together with the cusped property of
solutions at the boundary of the billiard infer that solutions are regular in
the open domain of the hexagon.
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Fig. 1. Periodic array with 6-fold symmetry. New x-axes corresponding to rotations through
j2p/6 (j=1,..., 5, 6) are shown as well.

The series (3) incorporates periodicity along only the x and y axes. To
incorporate remaining periodicities, the following is noted. The hexagonal
array of Fig. 1 is left unchanged by respective rotations through: (p/3,
2p/3, p, 4p/3, 5p/3). For the first rotation through p/3 (for which the
new x axis is labeled x1 in Fig. 1) we write

u(x, y)=u(x/2+`3 y/2, −`3 x/2+y/2) (5a)

For the second through 2p/3 (new x axis labeled x2 in Fig. 1) we write

u(x, y)=u(−x/2+`3 y/2, −`3 x/2−y/2) (5b)
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For the third rotation through 4p/3 we write (new x axis labeled x4 in
Fig. 1)

u(x, y)=u(−x/2−`3 y/2,+`3 x/2−y/2) (5c)

and for the fourth rotation through 5p/3, there follows (new x axis labeled
x5 in Fig. 1)

u(x, y)=u(x/2−`3 y/2,+`3 x/2+y/2) (5d)

The relation (5a) with (3) gives [n, q subscripts relate to the left side of
5(a–d)].

2n=n1−3q1, 2n1=n+3q

2q=n1+q1, 2q1=−n+q
(6a)

The relation (5b) with (3) gives

−2n=n2+3q2, 2n2=−n+3q

2q=n2−q2, 2q2= −n−q
(6b)

The relation (5c) with (3) gives

2n=n4+3q4, 2n4=−n−3q

2q=−n4−q4, 2q4= n−q
(6c)

The relation (5d) with (3) gives

2n=n5+3q5, 2n5=n−3q

2q=−n5+q5, 2q5=n+q
(6d)

Invariance of the solution to reflection about either the x axis (labeled x3 in
Fig. 1) or the y axis indicates that

n=−n3, q=−q3 (6e)

In the transformations, (6a)–(6e), the integer pairs (ni, qi) refer to rotation
axes {xi}, i=1,..., 5.

The starting solution (3) may be rewritten

unq(x, y)= C
S(n, q)

bnq exp i 32p
a
5n 1x

3
2+q 1 y

`3
2+aFnq64 (7)
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Table I. Lower-Lying Eigen-Number Pairs for the Hexagon Quantum Billiard

(n, q) (n1, q1) (n2, q2) (n3, q3) (n4, q4) (n5, q5) 3(ak/2p)2

(1, −1) (−1, −1) (−2, 0) (−1, 1) (1, 1) (2, 0) 4/3
(−1, 1) (1, 1) (2, 0) (1, −1) (−1, −1) (−2, 0) 4/3
(3, 1) (3, −1) (0, −2) (−3, −1) (−3, 1) (0, 2) 4
(−3, 1) (0, 2) (3, 1) (3, −1) (0, −2) (−3, −1) 4
(2, 2) (4, 0) (2, −2) (−2, −2) (−4, 0) (−2, 2) 16/3
(−2, 2) (2, 2) (4, 0) (2, −2) (−2, −2) (−4, 0) 16/3

The symbol S(n, q) denotes summation over n, q values which satisfy the
symmetry relations, (6a)–(6e). The phase constants Fnq come into play in
establishing boundary conditions. Substituting the resulting form into (1)
determines the related eigen k2 value.

Table I includes a list of eigen numbers and related energies entering in
the lower lying eigenstates of the hexagon quantum billiard. Quantum
states corresponding to any row of elements in Table I have a common k2

value. The sum S(n, q) in (7) runs over all elements in a row.
Symmetries of the hexagon comprise the C6v point group. This group

has six irreducible representations (‘‘irreps’’). Four of the irreps are one
dimensional and two are two dimensional. Wavefunctions whose eigen
numbers are listed in Table I are two-fold degenerate and real. It follows
that in the present work we have uncovered the basis functions for a two-
dimensional irrep of the C6v group. (Here one refers to symmetry related
degeneracy, and not ‘‘accidental’’ degeneracy.(14)) In general, s-fold degen-
erate eigenfunctions of a system Hamiltonian that commutes with the
symmetry operations of the system, comprise the basis functions of an
s-dimensional irrep of that symmetry group.(13)

To within normalization, explicit expressions for eigenstates of the
hexagon quantum billiard are given by (with edge-length a=1 and expan-
sion coefficients bn, q=1)

unq(x, y)=exp i2p #n x
3
+q

y

`3
+F (nq)0 $+exp i2p #n1

x
3
+q1

y

`3
+F (nq)1 $

+exp i2p !n2
x
3
+q2

y

`3
+F (nq)2 "+exp i2p !n3

x
3
+q3

y

`3
+F (nq)3 "

+exp i2p 5n4
x
3
+q4

y

`3
+F (nq)4 6+exp i2p 5n5

x
3
+q5

y

`3
+F (nq)5 6

(8)
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where (nv, qv) numbers and corresponding eigenenergies are given in
Table I. Values of the symmetry S(n, q) values in any eigenstate are
determined from boundary conditions. These complex functions represent
Bloch waves.

2.2. C6 Periodicity

The eigenstates (8) have required C6 periodicity. This property is illus-
trated explicitly for the first eigenstate of Table I. With phase-constants, F,
set equal to zero we obtain

u1, −1/2=cos 2p 1x
3
−

y

`3
2+cos 2p 1x

3
+

y

`3
2+cos 2p 12x

3
2 (10a)

with eigenvalue (with edge-length a reinserted), k2=(4p/3a)2. On the line
y=x/`3 (at p/6 to the x-axis in Fig. 1), we obtain

u1, −1/2=1+2 cos 2p 1 x
3/2
2 (10b)

which has the period, Dx=3/2. On the line y=`3 x (at p/3 to the x-axis
in Fig. 1), we obtain

u1, −1/2=2 cos 2p 1 x
3/2
2+cos 2p 1 2x

3/2
2 (10c)

which has the period, Dx=3/2. Note that these results apply as well to the
axes y=−x/`3, and y=−`3 x, respectively. On the line y=0, u1, −1
has the period Dx=3. On the line x=0, u1, −1 has the period Dy=`3.
Here is a recapitulation of periodicities for the hexagonal array (with
a=1).

(curve; period): (y=x/`3 , Dx=3/2); (y=`3 x, Dx=3/2);

(y=0, Dx=3); (x=0, Dy=`3) (10d)

3. BOUNDARY CONDITIONS

At this point, it should be noted that two pieces of information have
been inserted into the analysis: (a) The Fourier series (3) has proper perio-
dicity in x and y directions. (b) The solutions (6), (8) have 6-fold rotational
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symmetry and stated periodicity on the six symmetric axes. These condi-
tions are satisfied by a number of periodic arrays in the plane. This logic is
borne out in a read-out of the eigenstate (10a) at u=−1, (Fig. 2a) where u
is written for u1, −1/2. This read-out exhibits an array of hexagons
imbedded in 6-pointed stars with 6-fold symmetry that satisfies the perio-
dicity conditions (10d). The contour map of u(x, y) shown in Fig. 2b,
illustrates a monotonic decay of the eigenstate from its maximum (u=3) at
(0, 0) through the value −1 on the hexagon boundary to the minimum,
−1.5, at triangle centers.

In an attempt to impose Dirichlet boundary conditions, |u(x, y)| was
computationally minimized on the boundary of a hexagon. Resulting phase

Fig. 2. (a) Contour lines of the eigenstate value, u=−1, exhibiting 6-fold symmetry
composed of hexagons embedded in 6-pointed stars. (b) Contour map of the function u(x, y)
illustrating a monotonic decay of the function away from the center maximum, u=3 to the
minimum value, −1.5, at triangle centers. The value u=−1 occurs in the region between the
outer hexagon perimeter and the triangle domains.
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Fig. 2. (Continued).

constants are given by: F0=−0.027, F1=−0.1873, F2=−0.354, F3=
−0.527, F4=−0.854, F5=−0.6873. The resulting read-out of the contours
of |u(x, y)| is shown in Fig. 3 in which it is seen that 12 zero islands lie on a
hexagonal boundary. As noted above, this computational weakness is
attributed to discontinuities of the first derivative across hexagon bound-
aries. As boundary phase constants were imposed in this calculation the
hexagonal array of Fig. 1 reappears. Eigenfunctions corresponding to the
preceding phase constants are complex.

3.1. Neumann Boundary Conditions

To impose Neumann boundary conditions, the following technique
was employed. One sets

|j|2=(Re u)2+(Im u)2 (11a)
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Fig. 3. Contour map of the eigenstate |u(x, y)| corresponding to partially satisfied Dirichlet
boundary conditions showing 12 zero islands distributed about a hexagon.

and then constructs

N |j|2 ·n(D)=0 (11b)

where n is normal to the boundary D(x, y). The sum of the left side of
(11b) over 27 equally spaced points on the hexagonal boundary is compu-
tationally minimized. Resulting phase constants, Fnq, stemming from these
Neumann boundary conditions are all integers corresponding to real
eigenfunctions.

Summation over the equally spaced 27 boundary points is E-85. Read-
outs of the contour of |j(x, y)|2 are shown in Fig. 4. [The fact that Fnq
phase constants are integers for this case indicates that the wavefunction
(7) are solutions with Fnq=0. This property is consistent with precision of
these numerics.] Solutions so constructed maintain irregular behavior in
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Fig. 4. Contour map of the eigenstate |u(x, y)| corresponding to satisfied Neumann bound-
ary conditions. Central domains correspond to relatively large positive values. The value
uŒ(x, y)=0 occurs on the hexagon defined by triangle centers.

neighborhoods of vertices. However, these solutions have zero normal
derivatives at straight boundaries and are otherwise continuous in these
domains. It is noted that Neumann boundary conditions are satisfied if and
only if at least one of the following integer (n, q) relations 6(a)–(e), hold:
n=0, q=0, n=±q, n=±3q. These conditions are satisfied for the
related values listed in Table 1.

As an example of an eigenstate with Fnq=0, we consider the state
u1, −1/2 given by (10a) and confirm analytically that this wavefunction
satisfies Neumann boundary conditions on the boundaries of the hexagon
array. Due to six-fold symmetry of the wavefunction, it suffices to verify
these conditions on one parallel set of boundaries of the array. We label
u1, −1/2 — u and with (10a) obtain
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“u/“x=−
2p
3
! sin 2p 1x

3
−

y

`3
2+sin 2p 1x

3
+

y

`3
2+sin 2p 12x

3
2" (12a)

“u/“y=−
2p
3
5sin 2p 1x

3
−

y

`3
2+sin 2p 1x

3
+

y

`3
26 (12b)

We verify Neumann boundary conditions on the top and bottom segments
of hexagons, where “u/“y=0 at constant intervals of y. With (12b) there
results

x
3
−

y

`3
=

x
3
+

y

`3
+s (12c)

y=
`3

2
s (12d)

where s is a positive or negative integer. Substituting this value into (12a)
and expanding resulting forms gives

“u/“x3 # sin 2p 12x
3
2 cos 12ps

2
2− cos 2p 12x

3
2 sin 12ps

2
2+sin 2p 12x

3
2$

(12e)

This form vanishes providing s is odd, which with (12d) gives the correct
constant y-values of top and bottom segments of hexagons (Fig. 1).

As such (doubly degenerate) solutions, corresponding to integer phase
constants, are valid over the domain of the hexagon (excluding infinitesi-
mal neighborhoods about vertices), it follows that they comprise a two-
dimensional basis for the C6v group.

The last column of eigenvalues is consistent with (4) where n̄ and q̄
represent the lead (n, q) values in the table.

4. APPLICATIONS

These findings have application to two-dimensional thin films of
compounds in the nitride group which typically are in the wurtzite
(hexagonal) structure.(15) The wave functions described herein represent
stationary Bloch waves in such hexagonal arrays with Neumann boundary
conditions relevant. Furthermore, it has been reported that GaN ‘‘quantum
dots’’ are hexagonal, for which case eigenfunctions constructed with
Dirichlet boundary conditions are appropriate.(16) Nitride compounds are
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growing in importance in high-power semiconductor devices as well as in
wide-band optical emitters.(17)

CONCLUSIONS

A subset of eigenfunctions and eigenenergies were obtained for the
hexagon quantum billiard in terms of a double Fourier series with related
C6 symmetry. Dirichlet solutions are valid over an open domain of the
hexagon and are approximate. Neumann solutions corresponding to
integer phase constants are valid over the closed domain of the hexagon
(excluding vertices) and comprise the basis of a two-dimensional irreducible
representation of the C6v group. A table of the lower-lying eigen numbers
of this quantum billiard was included as well as the explicit form of eigen-
states given in terms of six exponentials, six pairs of quantum numbers and
six symmetry integers. Eigenstates so constructed were found to satisfy all
six C6 periodicities. A number of read-outs of contours of a lower lying
eigenstate all revealed 6-fold symmetry patterns comprised either of con-
tiguous hexagons or hexagons embedded in 6-pointed stars. A description
was included of the application of these findings to quantum dots or thin
films composed of hexagonal nitride compounds.
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